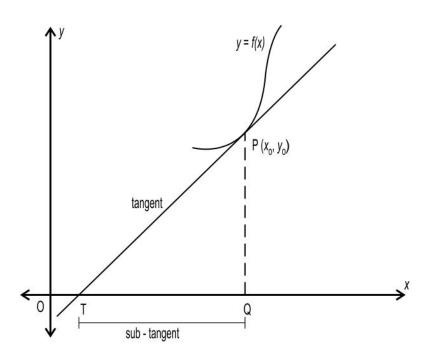
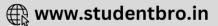
Multiple Choice Questions

Q: 1 The sub-tangent of a curve at a point is the projection on the x -axis of the portion of the tangent to the curve between the x -axis and the point of tangency. The sub-tangent of a curve y = f(x) at a point P(x_0, y_0) is illustrated below.

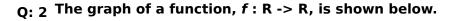


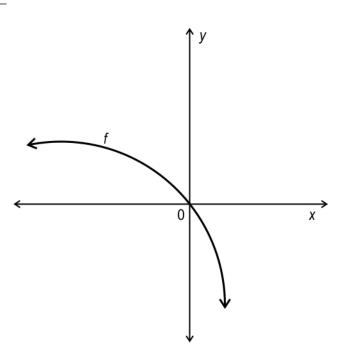
Among the given slopes of tangents of a curve at a given point, which will result in the longest sub-tangent?

1 30° 2 45° 3 60°	4 90°
--	--------------



[1]

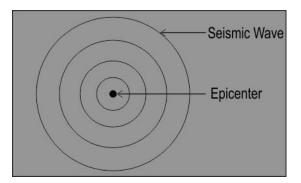




Nadeem said that f'(0) > f(0).

Is Nadeem right? Give a valid reason.

Q: 3 During an earthquake, seismic waves radiate from the epicenter of an earthquake in a [1] circular pattern, as shown in the figure below.



If seismic waves travel at a speed of approximately 6 km/sec, then what is the rate of change of the area affected by the earthquake when the radius of the affected area is 25 km? Show your steps.

CLICK HERE

>>

🕀 www.studentbro.in

(Note: Take π as 3.14.)

Q: 4 f(x) is an increasing function on the interval [0, 4], and f'(5) > 0.

Based on this information, is f(x) an increasing function on the interval [0, 5]? Justify your answer.

Q: 5 A drone is an unmanned remotely operated aerial vehicle, often used for target [2] — practice or surveillance.

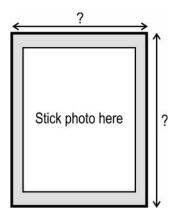
One such drone is flying according to the equation $s = t^n + 10$, where s is the distance of the drone from its remote's location at time t and n is a real number. The position of the remote is fixed.

If the velocity of the drone is equal to its acceleration at 3 seconds, find *n*. Show your work.

- **Q: 6** Find the equation of the tangent to the curve $x^2 y^2 = 4$ at the point (1, -2). Show your [2] steps.
- Q: 7 When the diameter of a circle is 8 cm, by what factor does a small change in diameter ^[2] affect its area? Show your work.
- Q: 8 Mr Aithal, a mathematics teacher, announces the following activity in his classroom [5] and assures grand prizes for the winners.

Instructions:

- ♦ Make a rectangular photo frame of total area 80 cm² using a chart paper.
- The frame should have a margin of 1.25 cm each at the top and the bottom.
- The frame should have a margin of 1 cm each on the left and the right sides.
- ♦ The area available at the centre to stick the photo should be maximum.

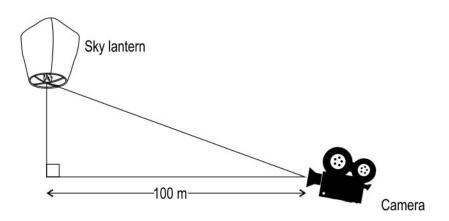


What must be the dimensions of such a photo frame? Show your work.

Get More Learning Materials Here :

CLICK HERE

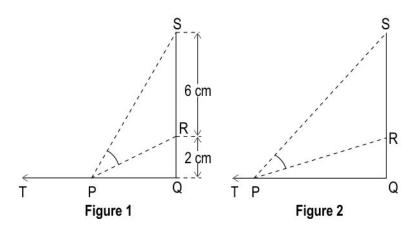
Q: 9 A camera positioned on the ground recorded a sky lantern that was located 100 [5] meters away. The lantern raised vertically from the ground into the sky at a constant rate of 25 meters per minute, and this entire process was captured on camera.



(Note: The figure is not to scale.)

When the lantern was at 75 m from the ground, what was the rate of change of angle of elevation, in radians/min? Show your steps.

Q: 10 In the figures shown below, points Q, R and S are fixed. Point P can move forward and [5] backward along ray QT.



(Note: The figures are not to scale.)

What should be the length of PQ such that \angle RPS is maximum? Show your work.

Case Study

Answer the questions based on the given information.

The total cost C (n) of manufacturing n earphone sets per day in the House of Spark Electronics Limited is given by:

CLICK HERE

 $C(n) = 400 + 4n + 0.0001 n^2$ dollars.

Get More Learning Materials Here : 🗾

🕀 www.studentbro.in

Each earphone set is sold at:

q = 10 - 0.0004 n dollars where $n \ge 0$, $q \ge 0$

The daily profit in dollars is determined by the equation:

P(n) = qn - C(n)

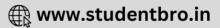
Q: 11 The marginal cost, *M* (*n*) is the change in total production cost that comes from [2] making or producing one additional unit. It is determined by the instantaneous rate of change of the total cost.

Find the marginal cost *M* (*n*) of 10 earphone sets. Show your work.

Q: 12 What quantity of daily production maximizes the profit? Show your work. [3]

The table below gives the correct answer for each multiple-choice question in this test.

Q.No	Correct Answers
1	1



Q.No	What to look for	Marks
2	Writes that Nadeem is wrong.	0.5
	Gives a reason. For example, <i>f</i> (0) = 0, and since <i>f</i> is decreasing, <i>f</i> '(0) < 0. Hence, <i>f</i> '(0) < <i>f</i> (0).	0.5
3	Finds the rate of change of the affected area as $\frac{dA}{dt} = 2\pi r \frac{dr}{dt} \text{ km}^2/\text{sec.}$	0.5
	Finds the rate of change of the area affected by the earthquake when the radius of the affected area (<i>r</i>) is 25 km as $2 \times 3.14 \times 25 \times 6 = 942 \text{ km}^2/\text{sec.}$	0.5
4	Writes that f(x) need not be an increasing function on [0, 5].	0.5
	Gives a reason. For example, even though f'(5) > 0, there may be an <i>x</i> in (4, 5), such that f'(<i>x</i>) < 0.	0.5
5	Differentiates <i>s</i> with respect to time to find the velocity of the drone as: $s' = nt^{(n-1)}$	0.5
	Differentiates s' with respect to time to find the acceleration of the drone as: s'' = n (n - 1) t ⁽ⁿ⁻²⁾	0.5
	Equates velocity of the drone to its acceleration at 3 seconds to find <i>n</i> as: $n \times 3^{(n-1)} = n(n-1) \times 3^{(n-2)}$ $=> n \times 3^{(n-1)} = n(n-1) \times 3^{(n-1)} \times 3^{-1}$	1
	=> n = 4	
6	Differentiates the given equation using the chain rule as follows: 2 xy^2 + (x^2) 2 y ($\frac{dy}{dx}$) = 0	0.5
	Simplifies the above equation as: $\frac{dy}{dx} = \frac{-y}{x}$	0.5

Q.No	What to look for	Marks
	Substitutes (1, -2) in the above equation to get the value of slope (m) as 2.	0.5
	Finds the equation of tangent as:	0.5
	y - (-2) = 2(x - 1)	
	=> y = 2 x - 4	
7	Writes the area of a circle in terms of diameter, <i>D</i> as:	0.5
	$A=\frac{\pi}{4}D^2$	
	Finds the rate of change of area with respect to diameter as follows:	1
	$\frac{\mathrm{dA}}{\mathrm{dD}} = \frac{\pi}{2} D$	
	Finds $\frac{dA}{dD}$ when $D = 8$ cm as 4π cm ² /cm.	0.5
	Concludes that for a small change in diameter, the area changes by a factor of 4π .	
	(Award full marks if the problem is solved correctly using approximation concept to obtain $4\pi x$ as the answer, where x is the small change in diameter.)	
8	Assumes the width of photo frame to be x cm and its length to be $\frac{80}{x}$ cm.	0.5
	Subtracts the specified margins from the width and length to find the area (A) available to stick the photo as:	1
	$A = (x-2)(\frac{80}{x} - \frac{5}{2})$ $\Rightarrow A = 85 - \frac{5}{2}x - \frac{160}{x}$	
	$\Rightarrow A = 85 - \frac{5}{2}x - \frac{160}{x}$	
	Differentiates area with respect to x as:	1
	$\frac{dA}{dx} = -\frac{5}{2} + \frac{160}{x^2}$	

Q.No	What to look for	Marks
	Equates the above derivative to zero and finds the critical point as:	1
	$-\frac{5}{2} + \frac{160}{x^2} = 0$	
	$\Rightarrow x^2 = 64$	
	$\Rightarrow x = 8$ (as x being a length cannot be negative)	
	Finds $\frac{d^2A}{dx^2}$ at $x = 8$ as:	1
	$\frac{d^2A}{dx^2}(\text{at } x=8) = -\frac{320}{x^3}(\text{at } x=8) = -\frac{5}{8} < 0$	
	Concludes that by second derivative test, the area is maximum at $x = 8$ cm.	
	Finds the length of the frame as $\frac{80}{8} = 10$ cm.	0.5
	Concludes that the required dimensions of the photo frame are 8 cm and 10 cm.	
9	Takes x as the distance between the lantern and the ground, θ as camera's angle of elevation in radians and t as the time in minutes.	0.5
	Writes that $\frac{dx}{dt}$ = 25 m/min.	
	Uses tangent function and writes:	0.5
	$\tan \theta = \frac{x}{100}$	
	Differentiates the above equation with respect to t to get:	1
	$\sec^2 \theta \times \frac{d\theta}{dt} = \frac{1}{100} \times \frac{dx}{dt}$	
	Uses steps 1 and 3 to write:	0.5
	$\frac{d\theta}{dt} = \frac{1}{4se^2}$	

Q.No	What to look for	Marks
	Uses secant function and writes:	0.5
	$\sec \theta = \frac{\gamma}{100}$	
	where y is the distance between the camera and the lantern.	
	Uses the Pythagoras theorem to find y as:	1
	$y^2 = x^2 + 100^2$	
	$=> y^2 = 75^2 + 100^2$	
	=> y = 125, as y > 0.	
	Substitutes $y = 125$ to get sec θ as $\frac{5}{4}$.	0.5
	Substitutes the value of sec $\boldsymbol{\theta}$ in the equation obtained in step 3 to get:	0.5
	$\frac{d\theta}{dt} = \frac{4}{25}$ or 0.16 radians/min.	
10	Considers the length of PQ as x cm and finds \angle QPR and \angle QPS as:	0.5
	$\angle QPR = \tan^{-1}\left(\frac{2}{x}\right)$	
	$\angle QPR = \tan^{-1}\left(\frac{2}{x}\right)$ $\angle QPS = \tan^{-1}\left(\frac{8}{x}\right)$	
	Considers \angle RPS as θ finds θ in terms of x as:	0.5
	$\theta = \tan^{-1}\left(\frac{8}{x}\right) - \tan^{-1}\left(\frac{2}{x}\right)$	
	Finds the derivative of θ with respect to x as follows:	0.5
	$ \frac{d\theta}{dx} = \frac{d}{dx} \left(\tan^{-1} \left(\frac{8}{x} \right) - \tan^{-1} \left(\frac{2}{x} \right) \right) $ $ = \frac{d}{dx} \left(\tan^{-1} \left(\frac{8}{x} \right) \right) - \frac{d}{dx} \left(\tan^{-1} \left(\frac{2}{x} \right) \right) $	

Q.No	What to look for	Marks
	Applies chain rule and differentiates as follows:	1.5
	$\frac{1}{\left(\frac{8}{x}\right)^2 + 1} \cdot \frac{d}{dx} \left(\frac{8}{x}\right) - \frac{1}{\left(\frac{2}{x}\right)^2 + 1} \cdot \frac{d}{dx} \left(\frac{2}{x}\right)$ $= \frac{2}{\left[\left(\frac{4}{x^2} + 1\right)x^2\right]} - \frac{8}{\left[\left(\frac{64}{x^2} + 1\right)x^2\right]}$	
	Equates the derivative to 0 to find that the maximum value of θ will occur when x is either 4 or (-4). States that the minimum value of θ is 0, which cannot occur at $x = 4$ and hence it must be the maxima. The working may look as follows:	1.5
	$\frac{8}{\left[\left(\frac{64}{x^2}+1\right)x^2\right]} = \frac{2}{\left[\left(\frac{4}{x^2}+1\right)x^2\right]}$ Cancelling x^2 on both sides, $4\left(\frac{4}{x^2}+1\right) = \frac{64}{x^2}+1$ Rearranges terms to obtain, $x^2 = 16$ $\Rightarrow x = +4$ or -4	
	Ignores $x = -4$ as the length of PQ cannot be negative and writes \angle RPS will be maximum when length of PQ = 4 cm.	0.5
11	Writes the marginal cost function as:	0.5
	$M(n) = \frac{dC}{dn} = \frac{d}{dn} (400 + 4n + 0.0001 n^2)$	
	Finds the marginal cost function by completing the differentiation in the above step as:	1
	M(n) = 4 + 0.0002 n	
	Finds the marginal cost of 10 earphone sets as 4.002 dollars by substituting 10 for <i>n</i> in the equation obtained in the above step.	0.5
12	Writes the daily profit function as:	0.5
	P(n) = (10 - 0.0004 n) n - (400 + 4 n +0.0001 n^2)	

Q.No	What to look for	Marks
	Simplifies the above equation to find the daily profit function as:	0.5
	$P(n) = -0.0005 n^2 + 6 n - 400$	
	Differentiates the daily profit function obtained in the previous step as follows:	0.5
	$P'(n) = \frac{d}{dn} (-0.0005 n^2 + 6 n - 400)$	
	= -0.001 n + 6	
	Finds the critical point of $P(n)$ as $n = 6000$ by equating $P'(n)$ to 0 and solving for n as shown below:	0.5
	P'(n) = -0.001 n + 6 = 0	
	=> <i>n</i> = 6000	
	Finds the second derivative as:	0.5
	P''(n) = -0.001	
	Writes that this means that the function will be at its maximum at $n = 6000$.	
	Concludes that since the maximum value is obtained at $n = 6000$, hence the profit is maximized when the daily production is 6000 earphones.	0.5

